
Getting Started with TBB on Windows
As a technical consultant with my own small company, I
cannot count on job security from government intervention—
just not enough votes there. In order to keep money coming
in, I have to rely on reinvention—by learning new techniques
for solving problems.

by Dave Vanden Bout

Introduction
One new area I am exploring is parallel programming. Parallel
programming has been around since the 1960s with the four-
processor Illiac IV (and maybe longer), but cheap silicon and
networking now give millions of people access to parallel
computers containing anywhere from a handful to thousands
of processors.

I see three main areas of parallel programming that are entering
the mainstream, differentiated by their distance from the CPU chip
and the amount of parallelism they offer:

1.	 “Cloud computing,” where thousands of computers cooperate
through the Internet to compute a result. Google’s proprietary
MapReduce* framework is the standard bearer for this, but there
are open source alternatives like Hadoop* and QtConcurrent*.

2.	Graphic processing units (GPUs), which use hundreds of
processing engines to offload general computational work from
the CPU. Nvidia’s CUDA Toolkit* and AMD/ATI’s CTM* are competing
frameworks that support each company’s particular chipset.

3.	Multicore CPUs that divide their workload between two to eight
identical computing cores. Intel and AMD provide the multicore
CPUs that most people are using today.

In this article, I will concentrate on programming multicore CPUs.
There are a growing number of libraries/frameworks for programming
multicore architectures (Data Distribution Service, Message Passing
Interface, and Concurrency and Coordination Runtime), but I chose
Threading Building Blocks (TBB) for the following reasons:

•	 It is open source, so I can see how it works.

•	 It is free, so there is no economic barrier to its expansion.

•	 There is a commercial version, so there may be consulting work
to be had.

•	 It is backed by Intel, so there is some technical and marketing
muscle behind it.

•	 It is on version 2.0, so it has survived the infant mortality phase.

Of course, other frameworks can make many of these same claims.
But I had to make a choice and get started, and not sit around waiting
for a clear winner. Even if I make the wrong choice, hopefully most of
the techniques I learn will be transferable to other frameworks.

In the sections that follow, I will describe how I set up the tools to use
TBB on Windows* and used them to create a simple parallel program.

Setting Up TBB
The first thing I did was to download the TBB documentation and
the Commercial Aligned Release. I unpacked the source archive
(tbb20_014oss_src.tar.gz) into the directory C:\llpanorama\TBB
(it is not particular about the directory where it is installed). Then I
unpacked the Windows binaries (tbb20_014oss_win.tar.gz) and copied
the ia32 subdirectory into the top level of the source directory. (There
is also a directory for 64-bit Windows, em64t, if you are using that.)

To build TBB and create applications, I downloaded and installed the
free Visual C++ 2005 Express Edition* (including the Graphical IDE).
Since building TBB requires it, I also downloaded and installed the
Microsoft Assembler*.

By default, the Express Edition only supports .NET applications. Since
I wanted to build Win32 applications (rebuilding TBB also requires
this), I installed the Microsoft Platform SDK for Windows Server 2003
R2*. [Note: to be able to follow the instructions in this article exactly,
make sure you download the “Windows Server 2003 R2” version
of the Platform SDK. I used this version because it is the version
that was specifically designed for use with Visual Studio 2005*. If
you install the newer “Windows SDK for Windows Server 2008 and
.NET Framework 3.5,” then you will have to modify the SDK-related
instructions below accordingly.]

So that the Express Edition can find the SDK, I modified the
VCProjectEngine.Dll.Express.Config file located in the \vc\vcpackages
subdirectory of the Express Edition to include the executable, include,
and library directories for my SDK installation. Here is my edited
VCProjectEngine.Dll.Express.Config file (long lines have been broken
into multiple lines to fit on this page):

<?xml version=”1.0” encoding=”utf-8”?>

<VCPlatformConfigurationFile

	 Version=”8.00”

	 >

 <Platform

		 Name=”VCProjectEngine.dll”

		 Identifier=”Win32”

		 >

		 <Directories

Include=”$(VCInstallDir)include;$(VCInstallDir)
PlatformSDK\include;

$(FrameworkSDKDir)include;

2

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Include”

Library=”$(VCInstallDir)lib;$(VCInstallDir)
PlatformSDK\lib;

$(FrameworkSDKDir)lib;$(VSInstallDir);$(VSInstall
Dir)lib;

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Lib”

Path=”$(VCInstallDir)bin;$(VCInstallDir)
PlatformSDK\bin;

$(VSInstallDir)Common7\Tools\bin;$(VSInstallDir)
Common7\tools;

$(VSInstallDir)Common7\ide;$(ProgramFiles)\HTML
Help Workshop;

$(FrameworkSDKDir)bin;$(FrameworkDir)$(FrameworkV
ersion);$(VSInstallDir);

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Bin;$(PATH)”

			 Reference=”$(FrameworkDir)$(
FrameworkVersion)”

			 Source=”$(VCInstallDir)crt\
src”

		 />

	 </Platform>

</VCPlatformConfigurationFile>

As the “Using Visual C++ 2005 Express with the Microsoft Platform
SDK” page states, as an alternative to editing the VCProjectEngine.
Dll.Express.Config file you can specify these paths by launching Visual
C++ Express Edition, selecting Options, and editing the “Project and
Solutions VC++ Directories” settings.

Then I changed the corewin_express.vsprops file in C:\Program Files\
Microsoft Visual Studio 8\VC\VCProjectDefaults so that the line

AdditionalDependencies=”kernel32.lib”

becomes

AdditionalDependencies=”kernel32.lib user32.lib
gdi32.lib winspool.lib

comdlg32.lib advapi32.lib shell32.lib ole32.lib
oleaut32.lib uuid.lib”

To enable the Win32 Windows Application, type in the Win32
Application Wizard of the Express Edition, I commented out lines
441-444 in the the AppSettings.htm file located in %ProgramFiles%\
Microsoft Visual Studio 8\VC\VCWizards\AppWiz\Generic\Application\
html\1033\:

// WIN_APP.disabled = true;

// WIN_APP_LABEL.disabled = true;

// DLL_APP.disabled = true;

// DLL_APP_LABEL.disabled = true;

Finally, before starting the Express Edition, I deleted the
vccomponents.dat file located in the %USERPROFILE%\Local
Settings\Application Data\Microsoft\VCExpress\8.0 directory.

In addition to using the Express Edition GUI, I wanted to use the
compiler from the command line. I modified the PATH, INCLUDE,
and LIB variables in the C:\Program Files\Microsoft Visual Studio 8\
Common7\Tools\vsvars32.bat file to include the required Platform SDK
paths, as shown below:

@set PATH=C:\Program Files\Microsoft Visual
Studio 8\Common7\IDE;

C:\Program Files\Microsoft Visual Studio 8\VC\
BIN;

C:\Program Files\Microsoft Visual Studio 8\
Common7\Tools;

C:\Program Files\Microsoft Visual Studio 8\SDK\
v2.0\bin;

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;

C:\Program Files\Microsoft Visual Studio 8\VC\
VCPackages;

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Bin;

%PATH%

@set INCLUDE=C:\Program Files\Microsoft Visual
Studio 8\VC\INCLUDE;

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Include;

%INCLUDE%

3

4

@set LIB=C:\Program Files\Microsoft Visual
Studio 8\VC\LIB;

C:\Program Files\Microsoft Visual Studio 8\SDK\
v2.0\lib;

C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Lib;

%LIB%

I also installed MinGW* make (version 3.80) on my system so I could
run the TBB makefile. I renamed the executable to make.exe and
added the mingw32\bin path to my system PATH environment
variable, so I could just enter “make” at a command prompt to launch
my builds.

After all that was installed and patched together, I opened a Visual
Studio 2005 command prompt window, went to the C:\llpanorama\
TBB\tbb20_014oss_src directory, and issued the commands:

C:> vsvars32.bat

C:> make

The first command initialized all the environment variables for the
command-line version of the compiler. The second started the build
process for the TBB libraries, which compiled and ran a suite of test
programs. This completed without any errors, so I figured I had set up
everything correctly.

Next, I read the Getting Started Guide for TBB. First I created a new
system environment variable, TBB20_INSTALL_DIR, and set it to the
location where I installed TBB (C:\llpanorama\TBB\tbb20_014oss_src
in my case). I also added my ia32\vc8\bin directory to my system PATH
so that all the TBB DLLs would be found as needed.

The Getting Started Guide describes how to build the sub_string_
finder example application. Rather than type all that in, I just jumped
to the directory for this example at ...\tbb20_014oss_src\examples\
GettingStarted\sub_string_finder\vc8. Double-clicking the sub_
string_finder.sln file brought up the Express Edition window. I built the
sub_string_finder project and ran it successfully.

My First TBB Program
For my initial attempt, I wanted to concentrate on the mechanics
of creating a TBB application with the Express Edition and not get
too bogged down in the details of the algorithm. So I wrote a simple
program that just multiplies two vectors item by item and places
the products into another, equal-sized vector. I started by cranking
up Express Edition and clicked on the New Project button (you can
also use File -> New -> “Project...” from the menu). In the New Project
window, I selected Win32 as the project type and Win32 Console
Application as the template. I gave the project the creative name of
“example1” and set its location to the C:\llpanorama\TBB\examples
directory. After clicking OK in the New Project window, and then
clicking Finish in the Win32 Application Wizard window, a window
opened with a simple code skeleton. I made additions to the skeleton
and arrived at the following program, which I will explain below.

01 // example1.cpp : Defines the entry point
for the console application.

02 //

03

04 #include “stdafx.h”

05 #include <iostream>

06 #include “tbb/task_scheduler_init.h”

07 #include “tbb/parallel_for.h”

08 #include “tbb/blocked_range.h”

09 #include “tbb/tick_count.h”

10 using namespace tbb;

11 using namespace std;

12

13 class vector_mult{

14 double *const v1, *const v2;	 //
multiply these vectors

15 double *v3;	 // put the
result here

16 public:

17 // constructor copies the arguments into
local storage

18 vector_mult(double *vec1, double *vec2,
double *vec3)

5

19 : v1(vec1), v2(vec2), v3(vec3) { }

20 // overload () so it does a vector
multiply

21 void operator() (const blocked_
range<size_t> &r) const {

22 for(size_t i=r.begin(); i!=r.end();
i++)

23 v3[i] = v1[i] * v2[i];

24 }

25 };

26

27 const size_t vec_size = 1000000;

28

29 int _tmain(int argc, _TCHAR* argv[])

30 {

31 // allocate storage for vectors

32 double *v1, *v2, *v3;

33 v1 = (double*)
malloc(vec_size*sizeof(double));

34 v2 = (double*)
malloc(vec_size*sizeof(double));

35 v3 = (double*)
malloc(vec_size*sizeof(double));

36

37 // init and multiply vectors serially and
time the operation

38 for(size_t i=0; i<vec_size; i++) { v1[i] =
v2[i] = v3[i] = i; }

39 tick_count serial_start =
tick_count::now();

40 for(size_t i=0; i<vec_size; i++) { v3[i] =
v1[i] * v2[i]; }

41 tick_count serial_end =
tick_count::now();

42

43 // reinit and multiply the vectors in
parallel and time the operation

44 for(size_t i=0; i<vec_size; i++) { v1[i] =
v2[i] = v3[i] = i; }

45 task_scheduler_init init;

46 tick_count parallel_start =
tick_count::now();

47 parallel_for(
blocked_range<size_t>(0,vec_size,1000),

 vector_mult(v1,v2,v3));

48 tick_count parallel_end =
tick_count::now();

49

50 // print some of the result vector to
make sure it is correct

51 for(size_t i=0; i<10; i++) { cout << v3[i]
<< endl; }

52

53 // print out the speedup delivered by
parallelism

54 cout << “Speedup from parallelism is “

55 << (serial_end - serial_start).
seconds()

56 / (parallel_end - parallel_start).
seconds() << endl;

57 return 0;

58 }

The program starts by allocating some memory for vectors v1, v2, and
v3 (lines 32-35). The size of these vectors is set by a constant defined
on line 27.

I wanted to multiply the vectors serially at first to get a baseline for
how long that took. I initialized the vectors on line 38 so that each
element stored its index. The current time is stored on line 39, after
which a loop is started on line 40 where each element in v1 and v2 is
multiplied and stored in the corresponding location in v3. Finally, the
completion time for this loop is stored on line 41. The starting and
ending times are used to calculate the time it takes to multiply the
vectors serially.

Next the same calculation is performed in parallel. The vectors are
reinitialized on line 44. (I did this to erase the product values in v3 so
I could be sure any correct values came from the parallel threads and
not the preceding serial calculation.) A task scheduler object is then
created on line 45. This object manages the scheduling of tasks onto
physical threads (cores of the CPU, essentially). You can specify the

6

number of threads when the scheduler object is instantiated, but it is
usually best to let it determine the number of threads automatically, in
case your application is run on a different type of CPU.

The starting and ending times are recorded on lines 46 and 48 for the
parallel loop on line 47. The parallel_for subroutine does the actual
creation of tasks that are scheduled for execution on the threads. It
takes two arguments. The first is an object that stores the range of
the vectors and a grainsize that specifies what size the vectors should
be cut into. The second argument is an object whose constructor
stores the pointers to the v1, v2, and v3 vectors as private variables
(see lines 18-19). What parallel_for does is partition the range of
the vectors into non overlapping pieces no larger than the specified
grainsize, and then create multiple copies of the vector_mult object
and pass one of the subrange pieces to each one. Then the vector_
mult objects are scheduled and run in parallel on the physical threads.

When one of the vector_mult objects runs, its () operator is called
and passed the subrange that specifies the sections of the vectors
it should multiply (see lines 21-24). The loop on line 22 gets the
beginning and ending indices of the subrange and just multiplies
the vector elements that lie between them. For example, the range
beginning and ending might be 51000 and 52000, so the vector_mult
object would do the following calculations:

v3[51000] = v1[51000] * v2[51000];

v3[51001] = v1[51001] * v2[51001];

...

v3[51999] = v1[51999] * v2[51999];

So each vector_mult object computes a small section of the final
product vector. The cores just get copies of the vector_mult object
and subranges in no particular order and compute the partial results.
Since the subranges are non overlapping, there is no danger that the
objects are overwriting each other’s results. And parallel_for makes
sure the entire range is covered so a complete product vector is
delivered.

After the parallel_for completes, a few of the product values are
printed on line 51 just to make sure the program is doing something
correctly. Then the amount of speed-up provided by using parallelism
is printed on lines 54-56.

Once the program was written, I had to get it compiled and linked. This
required the setting of a few project properties. I selected the Project
-> “example1 Properties...” menu item to open the Property Pages
window. Then I selected All Configurations from the Configurations
drop-down menu and I set the following properties so the compiler
and linker could find the TBB header files and libraries:

C/C++?General:

 Additional Include Directories =
$(TBB20_INSTALL_DIR)\include

Linker?General:

 Additional Library Directories =
$(TBB20_INSTALL_DIR)\ia32\vc8\lib

Then I selected the Debug configuration and set
the following properties:

Linker?Input:

 Additional Dependencies = kernel32.lib
$(NoInherit) tbb_debug.lib

Build Events?Post-Build Event:

 CommandLine = copy “$(TBB20_INSTALL_DIR)\
ia32\vc8\bin\tbb_debug.dll” “$(OutDir)”

These property settings link the debug version of my simple program
with the debug version of the TBB library and copy the debug version
of the TBB dynamic link library to the directory where the executable
file for my application can find it. I then selected the Release
configuration and set the corresponding properties using the non-
debug versions of the library:

Linker?Input:

 Additional Dependencies = kernel32.lib
$(NoInherit) tbb.lib

Build Events?Post-Build Event:

 CommandLine = copy “$(TBB20_INSTALL_DIR)\
ia32\vc8\bin\tbb.dll” “$(OutDir)”

Once these properties were all set up, I built the Debug and Release
versions by selecting the configuration and then selecting Build ->
“Build example1” from the menu bar. Once a version was built, I could
run it using the Debug -> Start Without Debugging menu item. I ran
both versions ten times and got the following speedups:

Debug Release
Sp

ee
du

p

0.48 1.05

0.48 1.08

0.50 0.90

0.47 0.95

0.49 1.11

0.50 1.07

0.50 1.11

0.50 1.13

0.49 0.93

0.50 1.10

In the Debug version, the parallel code runs about half the speed of
the serial code because all the diagnostic features of the TBB library
are enabled. These features watch out for many of the stupid things
I might do while developing code (like setting the number of physical
threads to a negative number). I would expect this to have a major
impact on the speedup.

However, the speedup in the Release version is really disappointing!
The average speedup is just 1.04. In fact, the parallel code is slower
than the serial code in 30 percent of the tests. Why is that!? My
feeling is that a simple multiplication of vectors does not provide
enough computational mass to outweigh the overhead of starting the
threads, but I have not run any experiments to investigate this.

As Alexey Kukanov illustrates in his “Why a simple test can get parallel
slowdown” blog post, sometimes multithreading a simple problem
leads to almost no speedup, or even to a performance slowdown. See
my “Let’s try this again...” blog post for a subsequent TBB experiment
where I applied a more difficult problem to TBB and saw a significant
speedup.

Conclusion
At this point, by following my example, you should be able to:

•	 Set up a development environment for building TBB-based
applications.

•	 Successfully recompile the TBB libraries.

•	 Use a few TBB constructs like the task scheduler, blocked ranges,
and parallel_for.

•	 Build a program from scratch that uses TBB.

And the best part is, it will not cost you a penny to do any of this.

Obviously, I have only scratched the surface of what TBB can do. As I
continue to work with TBB, I will be guided by the following questions:

•	 What other constructs does TBB provide, and what parallel
programming styles do they support?

•	 What characteristics of a program make it suitable for
parallelization?

•	 If a program does not run well after it is coded for parallel
execution, how do I find the bottlenecks?

© 2009, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Resources
•	 TBB documentation (http://www.threadingbuildingblocks.org/file.php?fid=81)

•	 TBB Commercial Aligned Release (http://www.threadingbuildingblocks.org/file.php?fid=78)

•	 Microsoft Visual C++ 2005 Express Edition (http://msdn.microsoft.com/en-us/vstudio/aa700736.aspx)

•	 Microsoft Assembler (http://www.microsoft.com/downloads/details.aspx?FamilyID=7a1c9da0-0510-44a2-b042-7ef370530c64&displaylang=en)

•	 Microsoft Platform SDK (http://msdn.microsoft.com/en-us/vstudio/aa700755.aspx)

•	 MinGW make (version 3.80) (http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=23918)

References
ThreadingBuildingBlocks.org, the official Threading Building Blocks open source site.

“Why a simple test can get parallel slowdown” by Alexey Kukanov, blog post describing how multithreading a simple problem can lead to a performance slow down.

“Let’s try this again...” by Dave Vanden Bout, blog post about a Julia set TBB application that shows a 1.8 speedup on a dual-core Athlon* processor.

http://www.threadingbuildingblocks.org/file.php?fid=81
http://www.threadingbuildingblocks.org/file.php?fid=78
http://msdn.microsoft.com/en-us/vstudio/aa700736.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=7a1c9da0-0510-44a2-b042-7ef370530c64&displaylang=en
http://msdn.microsoft.com/en-us/vstudio/aa700755.aspx
http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=23918
http://www.threadingbuildingblocks.org
http://software.intel.com/en-us/blogs/2008/03/04/why-a-simple-test-can-get-parallel-slowdown/
http://llpanorama.wordpress.com/2008/02/26/lets-try-this-again/

