
Introduction
Multicore technology is pervasive. To take advantage of these multicore processors, 
software developers are required to develop highly parallel applications that can scale up to 
today’s and tomorrow’s processors. 

Intel® Threading Building Blocks (TBB) is a C++ runtime library that abstracts the low-level 
threading details and provides a set of generic constructs which helps you write scalable 
parallel programs. 

This paper discusses the approach to parallelize the Data Encryption Standard (DES) 
algorithm with Intel® Threading Building Blocks and how it can scale for future processors. It 
is organized as follows. Section 2 contains a description of application scalability. Section 3 
briefly describes the DES algorithm. Section 4 describes the TBB implementation of the DES 
algorithm. Section 5 presents experimental results obtained for a parallel DES algorithm. 
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Scalability
Scalability is the quality of an application to expand efficiently 
to accommodate greater computing resources so as to improve 
application performance. For example, it can refer to the capability of 
a system to increase total throughput under an increased load when 
resources are added. Some of the resources might be the increase in 
number of cores and threads in the new processors or an increase in 
memory capacity. 

Factors inhibiting scalability
There are various factors that inhibit application scaling. Intel® Thread 
Profiler and VTune™ Performance Analyzer are a couple of the tools 
which can help you identify possible problems that prevent your 
application from scaling. 

Some of the common factors inhibiting scalability are: 

Granularity and parallel overhead 
Granularity is defined as the ratio of computation to synchronization 
of the threads. While dividing the computation into independent 
tasks, a fine-grained decomposition yields a large number of smaller 
tasks and a coarse-grained decomposition yields a small number of 
larger tasks. To benefit from threading, the amount of computation 
for each thread should be larger than the overhead of thread creation, 
synchronization, scheduling, and management. 

Load imbalance 
Load imbalance is a situation where all the threads are not doing 
equal amounts of computation. Load imbalance occurs when the 
granularity of tasks is large enough that some threads are left idle for 
a significant percentage of the computation time, waiting for the busy 
threads to finish. It represents the force-opposing parallel overhead 
that determines the ideal granularity. This results in idle processor 
time which, in turn, impacts performance. 

Synchronization overhead 
Synchronization constructs are necessary in parallel applications to 
ensure correct results when dealing with shared data, but they reduce 
performance because the code inside the synchronization construct 
is serial. To mitigate this problem, use atomic synchronization 
constructs like Interlocked operations available in Windows* threads 
or the #pragma omp atomic available in OpenMP* programming. They 
are ideal for incrementing a single variable, since these constructs 
consume fewer cycles than critical sections, mutex, and semaphores. 

Amdahl’s law
Amdahl’s law predicts the estimated speedup that can be achieved by 
converting a serial application to a parallel application. This first step 
estimates the benefit you can achieve by threading your application 
on a particular processor. Also, it gives an estimate of how well the 
application scales as more processors/cores are added. 

Tparallel = {(1-P) +P/Number of processors}  
Tserial + overhead

Tserial refers to the time taken to run the application before 
introducing any threads. Let’s assume that we decide to thread 
a particular region of code, so the P in Amdahl’s law refers to the 
fraction of the calculation that can be parallelized. The portion of 
code that is not threaded remains serial and its time is given by (1-
P). A certain amount of overhead is introduced while parallelizing the 
application due to the synchronization constructs. 

Scaling = Tserial / Tparallel

Data Encryption Standard  
(DES) Algorithm
DES was published in 1977 by the National Bureau of Standards  
for use in commercial and unclassified US Government applications. 
DES uses an electronic codebook (ECB) encryption mode, where the 
64-bit input plain text is converted to a 64-bit ciphertext using the  
56-bit key. 

Algorithm overview

Figure 1: Describes the Data Encryption Standard Algorithm
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Figure 2: Illustrates the function f( ) of DES 

DES operates on 64-bit blocks of plaintext. After the initial 
permutation, each block is broken into L0 and R0 components, each  
32-bits long. sixteen rounds of identical operations follow, where the 
function, f, combines the data with the key. After the sixteenth round, 
R16 and L16 are combined and a final permutation (inverse of the initial 
permutation) finishes off the algorithm.

Li=Ri-1

Ri=Li-1 XOR f(Ri-1, Ki)

In each round, the key bits are shifted, and then 48 bits are selected 
from the 56 key bits. The right half of the data is expanded from 
32 bits to 48 bits via an expansion permutation, combined with 48 
bits of shifted and permuted key via an XOR, substituted for 32 new 
bits using a substitution algorithm and permuted again. These four 
operations comprise the function f. The output of f is combined with 
the left half via XOR. The result of these operations becomes the 
new left half; the old left half becomes the new right half. These 
operations are repeated 16 times, making 16 rounds of DES.

Initial permutation
The initial permutation transposes the input block. The 64 bit plain-
text is permuted based on the table below:

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Key transformation 
The 64-bit DES key is reduced to a 56-bit key by ignoring every eighth 
bit. After that, the keys are permuted based on the table below::

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

The 56-bit key is divided into two 28 bit halves. Then, the halves are 
shifted left by either one or two bits depending on the round.

Round Shifts

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

Compression permutation
The initial permutation transposes the input block. The 64 bit plain-
text is permuted based on the table below:

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32
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Expansion permutation 
In this operation the right half of the data Ri is expanded from 32 bits 
to 48 bits. Because this operation changes the order of the bits as 
well as repeating certain bits (hence increasing the number of bits); 
this stage is known as an expansion permutation. 

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

S-box substitution  
After the compressed key is XORed with the expanded block, the  
48-bit results moves to a substitution operation. The substitutions 
are performed by eight substitution boxes or S-boxes. 

P-box permutation   
The 32-bit output of the S-box substitution is permuted according to 
a P-box. This permutation maps each input to an output position; no 
bits are used twice and no bits are ignored. 

16 2

7 8

20 24

21 14

29 32

12 27

28 3

17 9

1 19

15 13

23 30

26 6

5 22

18 11

31 4

10 25

The P-box permutation is XORed with the left half of the initial  
64-bit block

Final permutation   
The final permutation is the inverse of the initial permutation and is 
based on the table below: 

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Scalability analysis of DES 
VTune Performance Analyzer provides different collectors like 
Sampling, Call Graph, and Counter Monitor, which collect information  
to help you tune your application and system for performance. 

In this case we used VTune event-based sampling. Sampling is a  
non-intrusive technology that periodically interrupts the processor 
based upon user configured counters, and takes a snapshot of the 
execution context. The Sampling technology enables you to analyze 
system-wide software performance. It helps you to identify the 
performance critical processes, threads, modules, functions, and 
lines of code running on your system. This can include code, which 
is consuming most of the CPU time or generating the majority 
of processor stalls. Event-based sampling collects clock ticks and 
instructions retired by default. 

Figure 3: Illustrates the DESEncryption( ) consuming 99% of the clock-
ticks of the entire application
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For the DES Encryption, algorithm it indicates that the for loop in the 
DESEncryption( ) function that encrypts blocks in the ECB 
(Electronic Code Block) mode is the hot function since it consumes 
99% of the clock ticks for the entire application. The clock ticks as 
indicated by VTune Analyzer give the P for Amdahl’s law.

The scaling expected on a 4-processor system, assuming there is no 
overhead in creating and managing the threads, is 

Scaling (4 processor) = 100/ {1 + 99/4} 

= 100/25.75

= 3.88X

Since we are ignoring the overhead in creating and managing the 
threads, the scaling we achieve is always less than the expected  
scaling, 3.88X.

Also, the computations inside the for loop in DESEncryption( ) 
are data parallel, meaning that each thread can do the same 
calculations on different data. Since there are no dependencies 
between each 64-bit block of data, each can be encrypted separately. 
All of these factors make DESEncryption( ) a good candidate 
for threading.

Intel Threading Building Blocks
Intel Threading Building Blocks is a C++ runtime library that provides 
high-level generic implementations of parallel control structures and 
concurrent data containers. 

Intel Threading Building Blocks represents the culmination of years 
of threading research. The dilemma in dealing with ever-increasing 
counts of cores is efficient thread scheduling. Rather than dealing 
with threads, Intel TBB presents the idea of tasks. These are units of 
work that can be scheduled on physical threads by the library in an 
efficient manner, balancing the system overhead and load imbalance 
while maximizing cache conservation.

Applications written with Intel TBB are portable across Microsoft* 
Windows*, Linux* and Mac* operating systems. 

Intel TBB overview
Intel TBB provides a variety of parallel control structures that  
are suited for loop parallelizing, concurrent data containers, as  
well as a scalable memory allocator, task scheduler, and a variety  
of synchronization primitives. 

Parallel algorithms
The easiest route to parallelism is to parallelize a loop whose iterations 
can each run independently. 

The signature for parallel_for is :

parallel_for(blocked_range<size_
t>(0,n,IdealGrainsize), Instance of the 
clsss(arguments))

The parallel_for function divides the iteration space into multiple 
iteration spaces. Each of these iteration spaces is given to the task 
scheduler, each of which can be mapped to independently executing 
threads. Parallel_for works in conjunction with the blocked_range 
interval construct to define a range for dividing work among the tasks. 
The developer can use blocked_range2d for two-dimensional space 
and can define his own iteration space.

Balance comes with the selection of a grain size, a minimum sub-
interval to divide the range: too small a number pushes the application 
into the range of excessive parallel overhead while a range that is too 
large leads to load balance issues, particularly as the application is 
moved to machines with more cores.

Intel® Threading Building Blocks Features

Figure 4: Illustrates the different constructs in the TBB library 

Generic Parallel Algorithms Concurrent Containers

Task Scheduler

parallel_for
parallel_while

parallel_reduce
pipeline

parallel_sort
parallel_scan

concurrent_hash_map
concurrent_queue
concurrent_vector

Synchronization Primitives

atomic, spin_mutex, spin_rw_mutex
queueing_mutex, queue_rw_mutex, mutex 

Memory Allocation

cache_aligned_allocator
scalable_allocator

5



Grainsize 
Grain-size represents the smallest sub-range that is considered 
profitable for moving to another core. Ideal grain size is the happy 
balance between parallel overhead and load imbalance.

Grainsize helps you overcome the parallel overhead cost. If the grain 
size is too small, the overhead may exceed the useful work. If the grain 
size too large, the parallelism may be reduced. 

Intel Threading Building Blocks version 1.1 supports auto_partitioner( ) 
as a tech preview feature. The auto_partitioner() heuristically chooses 
a grain size, which aims to reduce overhead while avoiding load 
imbalance.

The signature for parallel_for() with auto_partitioner( ) is:

parallel_for(blocked_range<size_
t>(0,n), Instance of the class(arguments), 
auto_partitioner())

Parallelizing using TBB 

Initializing the task scheduler 

When the Intel Threading Building Blocks task scheduler is initialized 
with default values, the thread pool that will be used for processing 
the tasks is created. The developer can defer the creation of this 
thread pool and also can control how many threads he wants to create 
by changing the arguments passed to the task_scheduler_init.

The constructor for task_scheduler_init takes an optional parameter 
that allows you to specify the number of threads to be created.

#include “tbb/task_scheduler_init.h” 
using namespace tbb;

int main (void) {

 ....... 
 tbb::task_scheduler_init init; 
 .......

The parallel_for control structure 

In our example below, the parallel_for( ) function breaks the iteration 
interval [0, blocks) into chunks of 10,000, each of which are run on a 
separate thread. Each of these chunks is processed by the operator() 
declared in the class TBBDESEncryption( )

void tbb_parallel_for_TBBDESEncryption 
(DESStruct *dc, unsigned char * cp, int blocks) 
{ 
 parallel_for(blocked_range<int> 
(o,blocks,10000), TBBDESEncryption (dc, cp)); 
{

The parallel_for( ) requires a copy constructor, which creates an new 
object and initialized it.

The operator( ) function does the same computation on each 
chunk of data. A blocked_range<int> describes a one-dimensional 
iteration space over the data type int. The for loop is embodied in the 
operator( ) function and this for loop is parallelized.

Figure 5: Illustrates the how the parallel constructs in TBB work
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class TBBDESEncryption{ 
 .... 
  //constructors 
public: 
 TBBDESEncryption (DESStruct *dc, 
unsigned char* cp) :m_dc(dc),m_cp(cp) 
 { 
 } 
 void operator () (const blocked_
range<int> &r)const 
 { 
  .... 
  for(....) 
  { 
  }

 }

}

Scalable programming with Intel TBB 
The control structures provided by Intel Threading Building Blocks 
support data decomposition, which makes them scalable for current 
and future processor cores.

Data decomposition can be defined as the computation that can be 
independently applied to each collection of data, permitting a degree 
of parallelism that can scale with the amount of data. Intel Threading 
Building Blocks enables multiple threads to operate on different data 
sets. As new processors are added, the data sets are divided into 
smaller sets and each processor can independently process them.

Performance Results

System configuration
The testing environment consisted of Intel® Xeon® processor 5160 
(4GB RAM, two 3.0 GHz dual core processors). The 64-bit operating 
system was Microsoft Windows Vista Business*. The 32-bit 
application was compiled with the Intel® C++ Compiler for Windows* 
9.1.034 and Intel Threading Building Blocks for Windows* version 1.1. 
The input file used for encryption was a 10MB file 

Performance analysis 
The serial version was compiled with O3 and vectorzing enabled. The 
optimizing flag O3, which is supported in the Intel® Compiler, enables 
aggressive loop transformations and perfecting. Intel Compiler is the 
only one available that supports vectorization. The vectorized serial 
version ran in 0.59 seconds on a 2-core system and in 0.17 seconds on 
a 4-core system.

The TBB version with a grain-size of 10,000 or with auto_partitioner( ) 
being used ran in 0.34 seconds on a 2-core system and in 0.05 
seconds on a 4-core system. 

Since auto_partitioner( ) uses heuristics, there may be cases where it 
may not yield better performance. We recommend tuning the grain-
size for the application based on system testing. 

Figure 6: Compares the perfect scaling and the scaling achieved with Intel TBB 
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Conclusion
Software applications need to be threaded in order to take advantage 
of new multicore processors. Intel Threading Building Blocks provide a 
rich set of parallel algorithms which are tested and tuned for current 
and future Multi-core processors. Developers can achieve scalable 
parallelism with Intel TBB and can easily adapt to the new growing 
processor technology. 
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