
Introduction
Multicore technology is pervasive. To take advantage of these multicore processors,
software developers are required to develop highly parallel applications that can scale up to
today’s and tomorrow’s processors.

Intel® Threading Building Blocks (TBB) is a C++ runtime library that abstracts the low-level
threading details and provides a set of generic constructs which helps you write scalable
parallel programs.

This paper discusses the approach to parallelize the Data Encryption Standard (DES)
algorithm with Intel® Threading Building Blocks and how it can scale for future processors. It
is organized as follows. Section 2 contains a description of application scalability. Section 3
briefly describes the DES algorithm. Section 4 describes the TBB implementation of the DES
algorithm. Section 5 presents experimental results obtained for a parallel DES algorithm.

Scalable Parallelism with
Intel® Threading Building Blocks
This paper discusses the approach to parallelize the Data
Encryption Standard (DES) algorithm with Intel® Threading
Building Blocks and how it can scale for future processors.

Shwetha Doss
Software and
Solutions Group

Intel Corporation

Scalability
Scalability is the quality of an application to expand efficiently
to accommodate greater computing resources so as to improve
application performance. For example, it can refer to the capability of
a system to increase total throughput under an increased load when
resources are added. Some of the resources might be the increase in
number of cores and threads in the new processors or an increase in
memory capacity.

Factors inhibiting scalability
There are various factors that inhibit application scaling. Intel® Thread
Profiler and VTune™ Performance Analyzer are a couple of the tools
which can help you identify possible problems that prevent your
application from scaling.

Some of the common factors inhibiting scalability are:

Granularity and parallel overhead
Granularity is defined as the ratio of computation to synchronization
of the threads. While dividing the computation into independent
tasks, a fine-grained decomposition yields a large number of smaller
tasks and a coarse-grained decomposition yields a small number of
larger tasks. To benefit from threading, the amount of computation
for each thread should be larger than the overhead of thread creation,
synchronization, scheduling, and management.

Load imbalance
Load imbalance is a situation where all the threads are not doing
equal amounts of computation. Load imbalance occurs when the
granularity of tasks is large enough that some threads are left idle for
a significant percentage of the computation time, waiting for the busy
threads to finish. It represents the force-opposing parallel overhead
that determines the ideal granularity. This results in idle processor
time which, in turn, impacts performance.

Synchronization overhead
Synchronization constructs are necessary in parallel applications to
ensure correct results when dealing with shared data, but they reduce
performance because the code inside the synchronization construct
is serial. To mitigate this problem, use atomic synchronization
constructs like Interlocked operations available in Windows* threads
or the #pragma omp atomic available in OpenMP* programming. They
are ideal for incrementing a single variable, since these constructs
consume fewer cycles than critical sections, mutex, and semaphores.

Amdahl’s law
Amdahl’s law predicts the estimated speedup that can be achieved by
converting a serial application to a parallel application. This first step
estimates the benefit you can achieve by threading your application
on a particular processor. Also, it gives an estimate of how well the
application scales as more processors/cores are added.

Tparallel = {(1-P) +P/Number of processors}
Tserial + overhead

Tserial refers to the time taken to run the application before
introducing any threads. Let’s assume that we decide to thread
a particular region of code, so the P in Amdahl’s law refers to the
fraction of the calculation that can be parallelized. The portion of
code that is not threaded remains serial and its time is given by (1-
P). A certain amount of overhead is introduced while parallelizing the
application due to the synchronization constructs.

Scaling = Tserial / Tparallel

Data Encryption Standard
(DES) Algorithm
DES was published in 1977 by the National Bureau of Standards
for use in commercial and unclassified US Government applications.
DES uses an electronic codebook (ECB) encryption mode, where the
64-bit input plain text is converted to a 64-bit ciphertext using the
56-bit key.

Algorithm overview

Figure 1: Describes the Data Encryption Standard Algorithm

L0 R0

IP

IP-1

K1

K2

K16

L1 = R0 R1 = L0 + f (R0 , K1)

L2 = R1 R2 = L1 + f (R1 , K2)

L15 = R14 R15 = L14 + f (R14 , K15)

R16 = L15 + f (R15 , K16) L16 = R15

64-bit plaintext

64-bit Ciphertext

2

Figure 2: Illustrates the function f() of DES

DES operates on 64-bit blocks of plaintext. After the initial
permutation, each block is broken into L0 and R0 components, each
32-bits long. sixteen rounds of identical operations follow, where the
function, f, combines the data with the key. After the sixteenth round,
R16 and L16 are combined and a final permutation (inverse of the initial
permutation) finishes off the algorithm.

Li=Ri-1

Ri=Li-1 XOR f(Ri-1, Ki)

In each round, the key bits are shifted, and then 48 bits are selected
from the 56 key bits. The right half of the data is expanded from
32 bits to 48 bits via an expansion permutation, combined with 48
bits of shifted and permuted key via an XOR, substituted for 32 new
bits using a substitution algorithm and permuted again. These four
operations comprise the function f. The output of f is combined with
the left half via XOR. The result of these operations becomes the
new left half; the old left half becomes the new right half. These
operations are repeated 16 times, making 16 rounds of DES.

Initial permutation
The initial permutation transposes the input block. The 64 bit plain-
text is permuted based on the table below:

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Key transformation
The 64-bit DES key is reduced to a 56-bit key by ignoring every eighth
bit. After that, the keys are permuted based on the table below::

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

The 56-bit key is divided into two 28 bit halves. Then, the halves are
shifted left by either one or two bits depending on the round.

Round Shifts

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

Compression permutation
The initial permutation transposes the input block. The 64 bit plain-
text is permuted based on the table below:

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Ri-1

32 bits

Li-1

32 bits

Ri

Li

Shifted

28 bits

Shifted

56 bits
Permuted Choice

48 bits

28 bits 28 bits
Key

28 bits

Expansion
Permutation

48 bits

S box
Subsitution

Choice
32 bits

P box
Permutation

Expansion permutation
In this operation the right half of the data Ri is expanded from 32 bits
to 48 bits. Because this operation changes the order of the bits as
well as repeating certain bits (hence increasing the number of bits);
this stage is known as an expansion permutation.

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

S-box substitution
After the compressed key is XORed with the expanded block, the
48-bit results moves to a substitution operation. The substitutions
are performed by eight substitution boxes or S-boxes.

P-box permutation
The 32-bit output of the S-box substitution is permuted according to
a P-box. This permutation maps each input to an output position; no
bits are used twice and no bits are ignored.

16 2

7 8

20 24

21 14

29 32

12 27

28 3

17 9

1 19

15 13

23 30

26 6

5 22

18 11

31 4

10 25

The P-box permutation is XORed with the left half of the initial
64-bit block

Final permutation
The final permutation is the inverse of the initial permutation and is
based on the table below:

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Scalability analysis of DES
VTune Performance Analyzer provides different collectors like
Sampling, Call Graph, and Counter Monitor, which collect information
to help you tune your application and system for performance.

In this case we used VTune event-based sampling. Sampling is a
non-intrusive technology that periodically interrupts the processor
based upon user configured counters, and takes a snapshot of the
execution context. The Sampling technology enables you to analyze
system-wide software performance. It helps you to identify the
performance critical processes, threads, modules, functions, and
lines of code running on your system. This can include code, which
is consuming most of the CPU time or generating the majority
of processor stalls. Event-based sampling collects clock ticks and
instructions retired by default.

Figure 3: Illustrates the DESEncryption() consuming 99% of the clock-
ticks of the entire application

4

For the DES Encryption, algorithm it indicates that the for loop in the
DESEncryption() function that encrypts blocks in the ECB
(Electronic Code Block) mode is the hot function since it consumes
99% of the clock ticks for the entire application. The clock ticks as
indicated by VTune Analyzer give the P for Amdahl’s law.

The scaling expected on a 4-processor system, assuming there is no
overhead in creating and managing the threads, is

Scaling (4 processor) = 100/ {1 + 99/4}

= 100/25.75

= 3.88X

Since we are ignoring the overhead in creating and managing the
threads, the scaling we achieve is always less than the expected
scaling, 3.88X.

Also, the computations inside the for loop in DESEncryption()
are data parallel, meaning that each thread can do the same
calculations on different data. Since there are no dependencies
between each 64-bit block of data, each can be encrypted separately.
All of these factors make DESEncryption() a good candidate
for threading.

Intel Threading Building Blocks
Intel Threading Building Blocks is a C++ runtime library that provides
high-level generic implementations of parallel control structures and
concurrent data containers.

Intel Threading Building Blocks represents the culmination of years
of threading research. The dilemma in dealing with ever-increasing
counts of cores is efficient thread scheduling. Rather than dealing
with threads, Intel TBB presents the idea of tasks. These are units of
work that can be scheduled on physical threads by the library in an
efficient manner, balancing the system overhead and load imbalance
while maximizing cache conservation.

Applications written with Intel TBB are portable across Microsoft*
Windows*, Linux* and Mac* operating systems.

Intel TBB overview
Intel TBB provides a variety of parallel control structures that
are suited for loop parallelizing, concurrent data containers, as
well as a scalable memory allocator, task scheduler, and a variety
of synchronization primitives.

Parallel algorithms
The easiest route to parallelism is to parallelize a loop whose iterations
can each run independently.

The signature for parallel_for is :

parallel_for(blocked_range<size_
t>(0,n,IdealGrainsize), Instance of the
clsss(arguments))

The parallel_for function divides the iteration space into multiple
iteration spaces. Each of these iteration spaces is given to the task
scheduler, each of which can be mapped to independently executing
threads. Parallel_for works in conjunction with the blocked_range
interval construct to define a range for dividing work among the tasks.
The developer can use blocked_range2d for two-dimensional space
and can define his own iteration space.

Balance comes with the selection of a grain size, a minimum sub-
interval to divide the range: too small a number pushes the application
into the range of excessive parallel overhead while a range that is too
large leads to load balance issues, particularly as the application is
moved to machines with more cores.

Intel® Threading Building Blocks Features

Figure 4: Illustrates the different constructs in the TBB library

Generic Parallel Algorithms Concurrent Containers

Task Scheduler

parallel_for
parallel_while

parallel_reduce
pipeline

parallel_sort
parallel_scan

concurrent_hash_map
concurrent_queue
concurrent_vector

Synchronization Primitives

atomic, spin_mutex, spin_rw_mutex
queueing_mutex, queue_rw_mutex, mutex

Memory Allocation

cache_aligned_allocator
scalable_allocator

5

Grainsize
Grain-size represents the smallest sub-range that is considered
profitable for moving to another core. Ideal grain size is the happy
balance between parallel overhead and load imbalance.

Grainsize helps you overcome the parallel overhead cost. If the grain
size is too small, the overhead may exceed the useful work. If the grain
size too large, the parallelism may be reduced.

Intel Threading Building Blocks version 1.1 supports auto_partitioner()
as a tech preview feature. The auto_partitioner() heuristically chooses
a grain size, which aims to reduce overhead while avoiding load
imbalance.

The signature for parallel_for() with auto_partitioner() is:

parallel_for(blocked_range<size_
t>(0,n), Instance of the class(arguments),
auto_partitioner())

Parallelizing using TBB

Initializing the task scheduler

When the Intel Threading Building Blocks task scheduler is initialized
with default values, the thread pool that will be used for processing
the tasks is created. The developer can defer the creation of this
thread pool and also can control how many threads he wants to create
by changing the arguments passed to the task_scheduler_init.

The constructor for task_scheduler_init takes an optional parameter
that allows you to specify the number of threads to be created.

#include “tbb/task_scheduler_init.h”
using namespace tbb;

int main (void) {

 tbb::task_scheduler_init init;

The parallel_for control structure

In our example below, the parallel_for() function breaks the iteration
interval [0, blocks) into chunks of 10,000, each of which are run on a
separate thread. Each of these chunks is processed by the operator()
declared in the class TBBDESEncryption()

void tbb_parallel_for_TBBDESEncryption
(DESStruct *dc, unsigned char * cp, int blocks)
{
 parallel_for(blocked_range<int>
(o,blocks,10000), TBBDESEncryption (dc, cp));
{

The parallel_for() requires a copy constructor, which creates an new
object and initialized it.

The operator() function does the same computation on each
chunk of data. A blocked_range<int> describes a one-dimensional
iteration space over the data type int. The for loop is embodied in the
operator() function and this for loop is parallelized.

Figure 5: Illustrates the how the parallel constructs in TBB work

Split range recursively
until ≤ GrainSize

Tasks
available
to thieves

6

class TBBDESEncryption{

 //constructors
public:
 TBBDESEncryption (DESStruct *dc,
unsigned char* cp) :m_dc(dc),m_cp(cp)
 {
 }
 void operator () (const blocked_
range<int> &r)const
 {

 for(....)
 {
 }

 }

}

Scalable programming with Intel TBB
The control structures provided by Intel Threading Building Blocks
support data decomposition, which makes them scalable for current
and future processor cores.

Data decomposition can be defined as the computation that can be
independently applied to each collection of data, permitting a degree
of parallelism that can scale with the amount of data. Intel Threading
Building Blocks enables multiple threads to operate on different data
sets. As new processors are added, the data sets are divided into
smaller sets and each processor can independently process them.

Performance Results

System configuration
The testing environment consisted of Intel® Xeon® processor 5160
(4GB RAM, two 3.0 GHz dual core processors). The 64-bit operating
system was Microsoft Windows Vista Business*. The 32-bit
application was compiled with the Intel® C++ Compiler for Windows*
9.1.034 and Intel Threading Building Blocks for Windows* version 1.1.
The input file used for encryption was a 10MB file

Performance analysis
The serial version was compiled with O3 and vectorzing enabled. The
optimizing flag O3, which is supported in the Intel® Compiler, enables
aggressive loop transformations and perfecting. Intel Compiler is the
only one available that supports vectorization. The vectorized serial
version ran in 0.59 seconds on a 2-core system and in 0.17 seconds on
a 4-core system.

The TBB version with a grain-size of 10,000 or with auto_partitioner()
being used ran in 0.34 seconds on a 2-core system and in 0.05
seconds on a 4-core system.

Since auto_partitioner() uses heuristics, there may be cases where it
may not yield better performance. We recommend tuning the grain-
size for the application based on system testing.

Figure 6: Compares the perfect scaling and the scaling achieved with Intel TBB

Series 1

0

1
1

2

1.73

3.4
3

4

2

3

0.5

1.5

2.5

3.5

4

1 2 3 4
Cores

4.5

TBB Scaling

Ti
m

e
in

 S
ec

on
ds

Series 2

7

Conclusion
Software applications need to be threaded in order to take advantage
of new multicore processors. Intel Threading Building Blocks provide a
rich set of parallel algorithms which are tested and tuned for current
and future Multi-core processors. Developers can achieve scalable
parallelism with Intel TBB and can easily adapt to the new growing
processor technology.

© 2009, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

References
1. Charlie Kaufman, Radia Perlman, Mike Speciner “Network Security PRIVATE Communication in a Public World 2nd edition”

2. Bruce Schneier “Applied Cryptography, Protocols, Algorithms and Souce Code in C”

3. DES in Federal FIPS 46 and 81 standards http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

4. Parallelization of the Data Encryption Standard (DES) algorithm http://www.springerlink.com/content/v6h008374v67048v/

5. Intel® Threading Building Blocks Product Web page http://www3.intel.com/cd/software/products/asmo-na/eng/294797.htm

6. Demystify Scalable Parallelism with Intel Threading Building Block’s Generic Parallel Algorithms
http://www.devx.com/cplus/Article/32935

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.springerlink.com/content/v6h008374v67048v/
http://www3.intel.com/cd/software/products/asmo-na/eng/294797.htm
http://www.devx.com/cplus/Article/32935

